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Abstract
A new calculation is elaborated for the description of surface changes of
temperature and matter due to coupled transport through a porous medium. It
is based on a finite-size supposition (Neumann’s type boundary condition) and
on the solutions of parabolic type partial differential equations combined with
Lambert’s W-function. The boundary layer phenomena are also incorporated
into the description of the general transport. The procedure leads to a direct
computer simulation, providing concrete results on the real physical picture of
the given problem in good agreement with some experiments analysed.

PACS number: 44.30.+v

1. Introduction

As is widely experienced, the study of thermo-hydrodynamic effects plays a fundamental role
equally from the points of view of both basic [1, 2] and applied [3] research. Accordingly,
the aim of the present paper is to give an appropriate example for this topic. Thus, our
investigation is dealing with a consequence of the coupled transport process through a porous
medium, namely with the surface change of temperature and matter occurring due to its effect.

A general representation of the collective transport of characteristic extensive parameters
is given by Onsagers’ equations of the irreversible thermodynamics in the form

IQ = L11X1 + L12X2 = L11∇T + L12∇µ (1)

Im = L21X1 + L22X2 = L21∇T + L22∇µ. (2)

If the thermodynamic force X1 means now the gradient of the temperature T and X2 that of
the chemical potential µ, then IQ characterizes the total flux or current of the heat, while Im
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is that of the mass, in the creation of which the cross-effects also play a role. Among the
elements of the conductivity L11 demonstrates pure heat transfer, L22 that of the mass, L12 the
Duffour-effect and L21 the Soret-effect, respectively.

These relations provide a universal starting formalism [4] for the framework of the actual
calculation of any physical processes, which are based on the transport of the heat and mass
either by themselves or together.

Following the basic thermodynamic principles in the course of the description of the local
temporal change of the mass density M and temperature T, we start from the system of partial
differential equations (PDE) as

∂M

∂t
= D∇2M + K∇2T

∂T

∂t
= κ∇2T + γ∇2M (3)

where D is the diffusion coefficient, K is the thermodiffusion coefficient, κ is the heat
conductivity and γ characterizes the magnitude of the change of the temperature originating
from the local variation of the mass density at a given place.

In order to solve this PDE system, a simple finite-size, so-called zone-picture
approximation is applied, supposing the existence of necessarily thin, but sufficiently thick
layers (zones) inside which the macroscopic conductivity coefficients of the transport and
coupled transport may be considered to have constant values. While applying equations (3)
actually to some given problems, e.g. to the drying process, the relevant boundary conditions
can be written in the rather general form of

λq(∇T )b = F qm(t) − qq(t) λm(∇M)b + G(∇T )b = −qm(t) (4)

where the quantities F and G depend on the rate of the water vapour and liquid water, specific
heat of possible phase transitions taking place inside the matter, respectively, while the fluxes
of the heat and mass on the surface of the body are

qq(t) = αq(T0 − Tb) and qm(t) = αm(Mb − Mp) (5)

considering the convection, too. Here T0 denotes the ambient temperature, Tb is the
temperature on the boundary surface, (Mb − Mp) is the difference of the values of the mass
exchange potential between the boundary surface and the medium surrounding the drying body,
where coupled heat and mass transfer occurs, αq and αm are the heat and the mass-exchange
coefficients, respectively (particularly, in the case of general analysis of drying phenomena),
F = (1 − ε)Ce and G = λmδ, where ε is determined by the quantity of moving vapour in the
moist body in relation to the total current of the vapour and liquid, Ce is the specific heat of
evaporation, λm and λq are the coefficients of the mass- and heat-conductivity, respectively,
and δ denotes the thermal gradient of the transfer of vapour [3]. In contrast to [5], where
no particular boundary conditions were discussed, the general solution of system (3) can be
derived analytically by simple application of the usual Fourier transformation method and
presented as

M(x, t) =
{

1√
B

[
KC2 +

C1

2
(D − κ)

]
+

C1

2

}
[ϕ1(x, t) − ϕ2(x, t)]

(6)

T (x, t) =
{

1√
B

[
γ C1 − C2

2
(D − κ)

]
+

C2

2

}
[ϕ1(x, t) − ϕ2(x, t)]
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where the values of the quantities C1 and C2 introduced due to the integration depend on the
actual initial conditions and

ϕ1(x, t) ≡
exp

(
− x2

2t

√
D+κ+

√
B

)

2t
√

D + κ +
√

B

ϕ2(x, t) ≡
exp

(
− x2

2t

√
D+κ−√

B

)

2t
√

D + κ − √
B

(7)

B ≡ D2 − 2Dκ + κ2 + 4Kγ.

A specific property of these formulae is that they contain the time outside the square root
of the denominators. These functionals differ from those separate PDEs, which characterize
the usual mathematical formalism of the diffusion and/or heat conduction processes and have
the advantage of leading to a new, complex analytical solution for the temperature level and
moisture level, as shown in the following section.

2. Analysis of boundary conditions

2.1. General solution

In order to perform an adequate analysis of the problem for the above given boundary conditions
we start from some effective methods widely applied in hydrodynamics [1]. For the sake of
simplicity, we consider a one-dimensional problem and identify the boundary between two
different continua with the (vertical) plane x = 0 considering a Neumann-type boundary
condition for a parabolic-type transport equation for T:

−λ

(
∂T

∂x

)
x=0

= q(t) T = 0 t = −∞ x > 0 (8)

where q(t) denotes a known function of time and λ represents a general symbol of the heat-
conductivity coefficient. It can then be shown that the solution of the conductivity problem is
given in the following form

λT (x, t) =
∫ t

−∞

√
χ

π(t − τ)
q(τ ) exp

(
− x2

4χ(t − τ)

)
dτ (9)

where χ denotes a quantity proportional to the heat conductivity coefficient and is usually
called the heat propagation coefficient [3]. Then, if we consider conditions which give
dependence of the temperature and mass transfer function on the boundary, i.e.

T (x, t) → T (0, t) ≡ T0(t) (T = 0, t → −∞, x > 0) (10)

the solutions of the temperature and heat flux functions can be presented as follows:

T (x, t) = x

2
√

πχ

∫ t

−∞

T0(τ )

(t − τ)3/2
exp

(
− x2

4χ(t − τ)

)
dτ

and

qq(t) = λ√
πχ

∫ t

−∞

dT0(τ )

dτ

dτ√
t − τ

. (11)

In the present case of the coupled transport problem it seems to be suitable for the
investigation. Thus, the boundary condition discussed above can be generalized as

λq(∇T )b = αq(T0 − Tb) − Fαm(Mb − Mp)
(12)

λm(∇M)b = −Gαq(T0 − Tb) + [GF − 1]αm(Mb − Mp)
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Figure 1. (a) Graphic presentation of the solution of the integral I(t) (in relative units) and (b) an
experimentally determined surface mass flux versus time.

and by identifying the boundary surface with the plane x = 0, we will obviously have

[ϕ1(x = 0, t) − ϕ2(x = 0, t)] =
√

D + κ − √
B −

√
D + κ +

√
B

4t
√

Dκ − Kγ
. (13)

Therefore, the equation

αq(T0 − Tb) − Fαm(Mb − Mp) =
{

1√
B

[
γC1 − C2

2
(D − κ)

]
+

C2

2

}

×
√

D + κ +
√

B −
√

D + κ − √
B

4
√

Dκ − Kγ

λT
eff√

πχT
eff

∫ t

−∞

dτ

τ 2
√

t − τ
(14)

can be obtained for the heat flux and the similar relation

Gαq(Tc − Tb) + [GF − 1]αm(Mb − Mp) =
{

1√
B

[
KC2 +

C1

2
(D − κ)

]
+

C1

2

}

×
√

D + κ +
√

B −
√

D + κ − √
B

4
√

Dκ − Kγ

λM
eff√

πχM
eff

∫ t

−∞

dτ

τ 2
√

t − τ
(15)

for the mass flux. On the basis of former experience, some effective values of the heat
conductivity and heat propagation coefficients λ

(T ,M)
eff and χ

(T,M)
eff must be used instead of

simple coefficients relevant for separate heat (λq, χq) and mass (λm, χm) transfer, because
these coefficients now correspond to a coupled transport process. Let us apply at present the
function symbol I(t) for the time-dependence expressed by the same integral in the above-given
expressions. According to our knowledge, it represents a new solution formula for the theory
of the coupled process, given by collective mass and heat transfer, which exists, e.g., in the
course of a genuine drying procedure

I (t) =
∫ t

−∞

dτ

τ 2
√

t − τ
= lim

τ→(−∞)
2

√
t − τ

tτ
−

√
t−τ

τ
− arctan h(

√
t−τ/

√
t)√

t

t
. (16)

This function can be demonstrated graphically in figure 1(a), together with a graphical
presentation of an experimental result [6] in figure 1(b). This experimental curve significantly
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differs from the usual theoretical curves (also presented in the same figure) having the character
of exponential decay characterized by adequate relaxation time constants (see e.g. [7]).
According to the evaluation of these measurements performed on artificial porous matter
there is an inertial effect during drying illustrated by an increase in the moisture level at the
beginning of the coupled-transport process. As is clearly seen, I(t) leads to complete agreement
with the experiments fulfilled, by taking different initial moments of positive values. Then, we
may state with confidence that the process consists of two parts. First, the layer of adsorbed
moisture (in the form of a moisture film) must be removed. (Until this subprocess ends,
the moisture matter will accumulate in the regions near the boundary surface due to the
diffusion of the moisture from the bulk of the porous matter in the direction of the boundary
surface.) After this, the diffusion processes will dominate (resulting in the usual simple
exponentially decaying part of the solution curve), since the adsorbed layer of moisture has
already been removed.

Besides, at present we introduce some simplifying abbreviations for the coefficients as
follows:

ST =
{

1√
B

[
γC1 − C2

2
(D − κ)

]
+

C2

2

} √
D + κ +

√
B −

√
D + κ − √

B

4
√

Dκ − Kγ

λT
eff√

πχT
eff

(17)

SM =
{

1√
B

[
KC2 +

C1

2
(D − κ)

]
+

C1

2

} √
D + κ +

√
B −

√
D + κ − √

B

4
√

Dκ − Kγ

λM
eff√

πχM
eff

. (18)

Then, with their help we arrive at a simple ordinary algebraic system of equations, which can
be solved directly, and after some elementary algebraic operations these solutions have the
form

Tb = T0 +
[Ce(1 − ε)(ST λmδ + SM) − ST ]αm

αm[αq − (1 − ε)λmδ(αq + aq)]
I (t)

Mb = Mp +
αq(ST λmδ − SM)

αm[αq − (1 − ε)λmδ(αq + aq)]
I (t).

(19)

It means that in the case of drying processes these solutions depend on the liquid–vapour rate
ε in a rather complicated, nonlinear way. Therefore, the frequently emphasized [2, 4] quasi-
linear or even nonlinear character of the thermodynamical state-dependence of conductivity
and coupling coefficients can be presented explicitly by use of tools of the formalism developed
for practical engineering applications (e.g. in [3]).

2.2. Application of the boundary layer theory

In order to present the above-discussed modelling method in as general form as possible,
in this section we demonstrate a possibility for its common application together with certain
results of the boundary layer theory. We consider now the situation when the boundary surface
is not normal to the inlet current density vector, but has a general position. Accordingly, the
full incoming heat current density �q tot(t)can be divided into two parts:

�q tot(t) = �q(t) + �q tan(t) (20)

i.e. one part �q(t) can be treated in the same way as has been done in the previous section, and
its tangential component �q tan(t) within the framework of heat exchange phenomena taking
place in the boundary layer. The temperature change of the surface due to the tangential part of
the impinging heat flow current can be modelled by the common use of tools of the boundary
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layer theory and simple theory of the convective flow [8]. Let us apply these consideration
results here directly. During this operation, the primed letters correspond to a coordinate
system whose horizontal axis (x ′) lies parallel to the surface of the matter being dried, while
the coordinate y ′ demonstrates another axis, perpendicular to this surface. Therefore, the
actual equations are

vx ′
∂vx ′

∂x ′ + vy ′
∂vx ′

∂y ′ = ν
∂2vx ′

∂y ′2 + gpβ(T − T0)

(21)

vx ′
∂T

∂x ′ + vy ′
∂T

∂y ′ = χ
∂2T

∂y ′2
∂vx ′

∂x ′ +
∂vy ′

∂y ′ = 0

applied with boundary conditions, as

νx ′(y ′ = 0) = νy ′(y ′ = 0) = 0 νx ′(y ′ → +∞) = 0
(22)

T (y ′ = 0) = T1 T (y ′ → +∞) = T0

where T1 denotes the temperature of the plate, gp is the actual acceleration due to the
gravitational field, ν denotes the kinematic viscosity coefficient, χ = λa/ρcp, where λa

is the heat conductivity coefficient of air and β is the heat expansion coefficient of the air in
the present case. The heat flux due to the boundary layer effect is

qp = − 1

L

∫ L

0
λa

(
∂T

∂y ′

)
y ′=0

dx ′ = −4λa

3

(
d

dξ
ϑ

)
(0, P )CT (T1 − T0)

1
4
√

L
(23)

where

CT =
[
gpβ(T1 − T0)

4ν2

]1/4

L is the thickness of the body being dried, P is the Prandtl number and usually the function
ϑ(ξ) = (T − T0)/(T − T1), where ξ = CT y ′/ 4

√
x ′ is introduced in such types of calculations

[1, 8], i.e. knowledge of its explicit form is of crucial importance. Another function to
be introduced for solving this problem is ϕ(χ ) defined via vx = 4νC2

T

√
x dϕ(ξ)/dξ . The

system of ordinary differential equations (ODE) concerning this problem can be solved by
use of a series technique5. After some allowed simplifications (presented in the appendix), an
approximate solution of it can be written as

ϑ ′(0, P ) = K1 e−3PK2 where K1,K2 = const. (24)

At the same time, the boundary layer phenomenon can be described by an accurate calculation
of the surface change of the temperature and moisture level. In this way, we have the following
modification of the initial equation system, expressed by

λq(∇T )b =
(

αq +
4λT

eff

3
K1 e−3PK2

)
(T0 − Tb) − Fαm(Mb − Mp)

(25)

λm(∇M)b = −G

(
αq +

4λT
eff

3
K1 e−3PK2

)
(T0 − Tb) + [GF − 1]αm(Mb − Mp)

i.e. the coefficients appearing in the final solution of (12) will undergo a change, as

αq →
(

αq +
4λT

eff

3
K1 e−3PK2

CT

4
√

L

)
. (26)

Finally, let us consider the following modification of the previously explained idealized
model, which has been related to bulk porous materials, being dried with ideally flat surfaces.
5 MAPLE 8, a Symbolic Computation System, Waterloo Maple Inc. (2002).
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Since solution (23) is valid in the case of geometrical conditions, when the thickness of the
porous bulk matter is much larger than the magnitude of the thickness of the boundary layer
and/or at sufficiently high values of the Grashof number G (i.e. when the condition 4

√
G � 1

is satisfied corresponding to turbulent heat flow [1]), the above developed model calls for
further refinements. Then, in such more refined descriptions of the turbulent boundary layer
phenomena the roughness of the surfaces must also be taken into account. This refinement
can be performed by using the tools of classical hydrodynamics and some specific complex
functions, and the additional heat flux expression may be included subsequently in the general
set of formulae discussed above. Starting from certain known relations developed within the
framework of the boundary layer theory, we modify them by taking into account the order of
magnitude of knobs placed on the surface of the matter being dried. In this case, the heat flux
contribution [1] in the turbulent boundary layer is

�qblturb = ρcpχturb(∇T )bl (27)

where it is assumed that the flowing fluid is incompressible. It must be emphasized that the
temperature gradient in the case of turbulent boundary layer heat conduction(∇T )bl is related
directly to the boundary layer itself and therefore differs from (∇T )b. In order to estimate the
heat flow contribution due to boundary layer effects, we take into account here the relationship
χturb ∝ 1

ν3 (yv∗)4 valid for high values of the Prandtl number (in this expression v∗ denotes
the characteristic velocity of the turbulent flow, having the explicit form v∗ = U

√
c
2 [1]).

Therefore, the heat propagation coefficient for such flows is given as

χturb ∝ y4U 4

ν3
c2 (28)

where y denotes the distance from the surface of the solid body, surrounded by turbulent flow
(at least in the boundary layer) of an incompressible fluid, U is the constant velocity of the
basic fluid flow and c is the flow resistance factor. The average air flow resistance coefficient
C can be calculated rather accurately, if we know the order of magnitude of knobs d on the
surface of the body being dried. Namely, within the framework of the boundary layer theory,
this factor is defined as

C = 1

l

∫ l

0
c′(x ′) dx ′ (29)

where l means the length of the sample, and c(x) obeys the following relation (whose validity
can be accepted with logarithmic accuracy):

0.59√
c

= ln
x ′√c

d
(30)

where the length x ′ is measured along the surface of the bulk porous matter. The solution of
this equation with respect to c(x ′) can be explained by Lambert’s W-function (precisely with
respect to its analytical branch [9]), which we found by use of the MAPLE software package
(see footnote 5).

Therefore, the resistance coefficient is given by the integral of

C =
∫ l

0
Lamb W(d, x ′) dx ′ = l[1 − Lamb W(d, l) + Lamb W 2(d, l)]

Lamb W(d, l)
(31)

i.e. the solution is explained by use of the Lambert W-function. The graphical presentation of
the resistance coefficient in relative units is given in figures 2(a) and (b).

These results are in good qualitative agreement with certain earlier ones obtained by
variational principles of the extended irreversible thermodynamics [10], moreover with some
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Figure 2. Shape of the air resistance factor according to the calculations based on the use of the
Lambert W-function: (a) solution curves of the air resistance obtained by direct application of the
formula (31) for three different possible magnitudes of knobs, (b) air resistances calculated for unit
length in the case of the same magnitudes of knobs.

drying experiments [6]. This fact demonstrates the usefulness of the application of the Lambert
W-function to solve the task of the change of surface temperature and matter during a coupled
transport process.

3. Conclusions

1. As is seen, the calculation given in this paper can describe the basic complex phenomena
of the coupled transport effects, which lead to the creation of surface inhomogeneity of
temperature and matter.

2. This method can contain expressively the thermodynamic cross-effects, which play the
main role in the development of surface changes of temperature and matter, but does not
reflect directly the dissipative character of the phenomenon.

3. A recent work, dealing with a refined model of the properties of the surface moisture
level [11] hints at the possibility of a claim to investigate the problem beyond the classical
irreversible thermodynamic theory. We believe that our present research, which points
to a new method, based on the application of the Lambert W-function, can supplement
efficiently this idea and that the common continuation of both will provide some more
precise information on the questions analysed above.
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Appendix

In this appendix the calculation leading to the final solution (24) will be presented briefly.
As is well known from the boundary layer theory of the viscous flow, the problem discussed
by Pohlhausen [8] leads to the following nonlinear ODE system (in all of the forthcoming
equations the primes denote derivatives with respect to the variable ζ ):

ϕ′′′ + 3ϕϕ′′ − 2ϕ′2 + ϑ = 0 ϑ ′′ + 3Pϑ ′ = 0 (32)

with boundary conditions:

ϕ(0) = 0 ϕ′(0) = 0 ϑ(0) = 0 ϕ′(∞) = 0 ϑ(∞) = 0. (33)

We solved this coupled nonlinear system by a series method in a relatively low-order
approximation using the MAPLE software package (see footnote 5). The solutions are:

ϕ(ξ) = ϕ(0) +
dϕ

dξ

∣∣∣∣
ξ=0

ξ +
1

2

d2ϕ

dξ 2

∣∣∣∣
ξ=0

ξ 2 −
(

1

2
ϕ(0)

d2ϕ

dξ 2

∣∣∣∣
ξ=0

+
1

6
ϑ(0)

)
ξ 3

+

(
3

8
(ϕ(0))2 d2ϕ

dξ 2

∣∣∣∣
ξ=0

+
1

8
ϕ(0)ϑ(0) − 1

8

dϕ

dξ

∣∣∣∣
ξ=0

d2ϕ

dξ 2

∣∣∣∣
ξ=0

− 1

24

dϑ

dξ

∣∣∣∣
ξ=0

)
ξ 4

+


− 9

40
(ϕ(0))3 d2ϕ

dξ 2

∣∣∣∣
ξ=0

− 3

40
(ϕ(0))2ϑ(0) +

9

40
ϕ(0)

dϕ

dξ

∣∣∣∣
ξ=0

d2ϕ

dξ 2

∣∣∣∣
ξ=0

+
1

40
ϕ(0)

dϑ

dξ

∣∣∣∣
ξ=0

+

dϕ

dξ

∣∣∣
ξ=0

ϑ(0)

20


 ξ 5 +


− 1

40


d2ϕ

dξ 2

∣∣∣∣∣
ξ=0




2

+
P

40
ϕ(0)

dϑ

dξ

∣∣∣∣∣
ξ=0


 ξ 5 + O(ξ 6)

for the function ϕ(ξ) and

ϑ(ξ) = ϑ(0) +
dϑ

dξ

∣∣∣∣
ξ=0

ξ − 3P

2
ϕ(0)

dϑ

dξ

∣∣∣∣
ξ=0

ξ 2 +

(
3

2
P 2(ϕ(0))2 dϑ

dξ

∣∣∣∣
ξ=0

− P

2

dϕ

dξ

∣∣∣∣
ξ=0

dϑ

dξ

∣∣∣∣
ξ=0

)
ξ 3 +

(
9

8
P 2ϕ(0)

dϕ

dξ

∣∣∣∣
ξ=0

dϑ

dξ

∣∣∣∣
ξ=0

− 9

8
P 3(ϕ(0))3 dϑ

dξ

∣∣∣∣
ξ=0

− 1

8
P

d2ϕ

dξ 2

∣∣∣∣
ξ=0

dϑ

dξ

∣∣∣∣
ξ=0

)
ξ 4

+

(
3

10
P 2ϕ(0)

d2ϕ

dξ 2

∣∣∣∣
ξ=0

dϑ

dξ

∣∣∣∣
ξ=0

+
27

10
P 4(ϕ(0))4 dϑ

dξ

∣∣∣∣
ξ=0

− 27

20
P 3(ϕ(0))2 dϕ

dξ

∣∣∣∣
ξ=0

dϑ

dξ

∣∣∣∣
ξ=0

)
ξ 5 +


 9

40
P 2

(
dϕ

dξ

∣∣∣∣
ξ=0

)2
dϑ

dξ

∣∣∣∣
ξ=0

+
3

40
Pϕ(0)

dϑ

dξ

∣∣∣∣
ξ=0

d2ϕ

dξ 2

∣∣∣∣
ξ=0

+
1

40
Pϑ(0)

dϑ

dξ

∣∣∣∣
ξ=0


 ξ 5 + O(ξ 6)
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for the function ϑ(ξ). These solutions can be simplified directly and relatively easily by use
of the relevant relationships from the boundary conditions (33), namely, by ϕ(0) = 0, ϕ′(0) =
0, ϑ(0) = 0. After allowed simplifications, many terms in both solutions become annulated
and ϑ ′(0, P ), playing a crucial role in expression (23), can be calculated by trivial integration
methods leading to (24).
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